A Novel Type of Thermal Solar Water Disinfection Unit

نویسندگان

  • J. Dietl
  • H. Engelbart
  • A. Sielaff
چکیده

A novel type of solar thermal water disinfection unit is presented in this work. The system is safe and easy to use and can be built with basic tools and widely available materials. In the unit, water is disinfected by temperature increase up to the boiling point and output is controlled by the change in density. For employing the change in density to control the water output, a dimensioning procedure is suggested, giving the required height of the water reservoir, the heating section and the rising tube. Computational fluid dynamics simulations were performed to calculate the temperature increase in the rising tube, as it follows the temperature increase in the heated section. A model is presented to predict the water output and find a cost-effective configuration. For heating the water a simple flat plate absorber was designed and tested. With approximately 2 square meters of absorber area, up to 50 liters water output are expected per day in regions with high solar irradiation. The system was tested with contaminated water from the sewage and a reduction to zero coliform bacteria/100ml was obtained. In order to promote the distribution of the system, a construction manual is in the design process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing the Performance of Solar Water Disinfection with Potassium Persulfat: Laboratory Study with Enterococcus faecalis

Background & Aims of the Study: The safe drinking water providing is one of the most crucial objections in these centenaries. Bacterial water contamination and high rate of morbidity and mortality is crucial health threat. Efficiency of potassium persulfat (KPS) associated solar disinfection as a novel water disinfection technology was evaluated in batch scale experiments, us...

متن کامل

Experimental Investigation of the Thermal Performance of Vacuum Tube Solar Collectors (VTSC) Using Alumina Nanofluids

The enhancement of the thermal performance of Vacuum Tube Solar Collectors (VTSC) was studied by using alumina nanofluid as working fluid. VTSC is a simple and commonly utilized type of collector. This study established the heat transfer experimental model of all glass VTSCs used in a forced-circulation solar water heating system using alumina nanofluid as base fluid. Al2O3 (with an average par...

متن کامل

Disinfection of contaminated water by using solar irradiation.

Contaminated water causes an estimated 6 to 60 billion cases of gastrointestinal illness annually. The majority of these cases occur in rural areas of developing nations where the water supply remains polluted and adequate sanitation is unavailable. A portable, low-cost, and low-maintenance solar unit to disinfect unpotable water has been designed and tested. The solar disinfection unit was tes...

متن کامل

Solar disinfection of drinking water contained in transparent plastic bottles: characterizing the bacterial inactivation process.

A series of experiments is reported to identify and characterize the inactivation process in operation when drinking water, heavily contaminated with a Kenyan isolate of Escherichia coli, is stored in transparent plastic bottles that are then exposed to sunlight. The roles of optical and thermal inactivation mechanisms are studied in detail by simulating conditions of optical irradiance, water ...

متن کامل

Thermodynamic diagnosis of a novel solar-biomass based multi-generation system including potable water and hydrogen production

In this study, a new proposed multi-generation system as a promising integrated energy conversion system is studied, and its performance is investigated thermodynamically. The system equipped with parabolic trough collectors and biomass combustor to generate electricity, heating and cooling loads, hydrogen and potable water. A double effect absorption chiller to provide cooling demand, a proton...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015